
ARTICLE

Received 8 Jul 2014 | Accepted 10 Apr 2015 | Published 20 May 2015

Recent decrease in typhoon destructive potential
and global warming implications
I-I Lin1 & Johnny C.L. Chan2

Typhoons (tropical cyclones) severely impact the half-billion population of the Asian Pacific.

Intriguingly, during the recent decade, typhoon destructive potential (Power Dissipation

Index, PDI) has decreased considerably (by B35%). This decrease, paradoxically, has

occurred despite the increase in typhoon intensity and ocean warming. Using the method

proposed by Emanuel (in 2007), we show that the stronger negative contributions from

typhoon frequency and duration, decrease to cancel the positive contribution from the

increasing intensity, controlling the PDI. Examining the typhoons’ environmental conditions,

we find that although the ocean condition became more favourable (warming) in the recent

decade, the atmospheric condition ‘worsened’ at the same time. The ‘worsened’ atmospheric

condition appears to effectively overpower the ‘better’ ocean conditions to suppress PDI. This

stronger negative contribution from reduced typhoon frequency over the increased intensity

is also present under the global warming scenario, based on analysis of the simulated

typhoon data from high-resolution modelling.
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D
espite the severe impact of individual tropical cyclones
such as Sandy (in 2012)1 and Haiyan (in 2013)2,3, recent
global tropical cyclone activity as a whole has actually

decreased considerably since the early 1990s4. An evident
decrease in tropical cyclone destructive potential (that is, PDI)
has been observed in the most active and hazardous tropical
cyclone basin on the Earth, the Western North Pacific Main
Development Region (MDR, Supplementary Fig. 1)5–7. Because
these tropical cyclones (referred to as typhoons in the region) are
severe threats to the half-billion population and the huge volume
of economic activities in the Asia Pacific regions (for example,
China, Taiwan, Japan, Philippines, Hong Kong and Korea) each
year5, it is of great interest to study this observed decrease in
typhoon destructive potential5–7.

The PDI (Power Dissipation Index), Proposed by Emanuel in
2005 (ref. 8), is a widely used parameter to characterize the
destructive potential of tropical cyclones. The PDI of a tropical
cyclone is defined as the sum of the 6-hourly maximum surface
wind speed (cyclone intensity) cube over the lifetime of a cyclone.
The annual PDI of a specific tropical cyclone basin is simply the
sum of the PDIs of all tropical cyclones passing that basin in a
year (or in the cyclone-active season of that year). As this research
does not involve with individual cyclone cases, for convenience,
the annual PDI will subsequently be simplified to ‘PDI’.

In this study, we found that in the recent decade, the
PDI-contributing factors (typhoon frequency, duration and
intensity) had made opposite contributions to PDI in the recent
decade. Although there was some increase in typhoon intensity,
the typhoon frequency and duration decreased at the same time.

The negative contributions from the reduction in typhoon
frequency and duration overpowered the positive contribution
from the increased intensity; therefore, the PDI still decreased.
Similar opposite contributions to PDI were suggested in the
global warming scenario9. Using the projected typhoon data from
high-resolution modelling from Zhao and Held10,11, we found
that although typhoon intensity may increase (relative to the
present intensity) under the global warming scenario, typhoon
frequency could decrease even more notably. The PDI is the
residual after the offset from these opposing contributors.
Therefore, based on the above projection, the western North
Pacific typhoon PDI under global warming was estimated to be
B85% of the current value, equivalent to a 15% reduction in
destructive potential.

Results
The observed recent PDI decrease. The value of the typhoon-
season (July–October) PDI in the recent pentad (2008–2012) was
only B63% that of the 1993–1997 period (see Fig. 1a). To
understand the cause of this decrease, we first examined the ocean
environment because the ocean thermal conditions, including
both the sea surface temperature (SST) and the upper ocean heat
content (UOHC), are important factors for tropical cyclone
intensity change and could impact PDI8,12–18. The UOHC (also
called the tropical cyclone heat potential) is defined as the
integrated heat content from the SST down to the 26 �C isotherm
(D26, the measure of the subsurface warm ocean layer thickness)
in the subsurface ocean14,16,17.

1992 1996 2000 2004 2008 1992 1996 2000 2004 2008 2012 1992 1996 2000 2004 2008 20122012

1992 1996 2000 2004 2008 2012 1992 1996 2000 2004 2008 2012

Year

Year Year
1992 1996 2000 2004 2008 2012

Year

Year Year

4

3

2

1

0

P
D

I (
m

3 
s–3

, ×
10

7 )

31.0

30.5

30.0

29.5

29.0

28.5

28.0

27.5

27.0

100

95

90

85

80

75

D
26

 (
m

)
105

100

95

90

85

80

75

T
C

H
P

(k
J 

cm
–2

) 

S
S

T
 (

°C
)

25

20

15

10

T
C

 c
ou

nt

13
12
11
10
9
8
7
6
5
4
3
2
1

D
ur

at
io

n_
at

_s
ea

 (
D

ay
s)

45

40

35

30

25

20

15

10

5

In
te

ns
ity

 (
m

 s
–1

)
a b c

d e f

y = –0.0259x + 2.0058
P=0.465; r=0.173; > 50%

y = –0.0033x + 29.157
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Figure 1 | Time series of PDI and related parameters. Time evolution of the observed PDI and other parameters over the western North Pacific MDR in

the past two decades. The trend line for each time series, based on linear regression is also depicted. Standard deviations are depicted by dotted curves.

(a) PDI, (b) SST, (c) the depth of the 26 �C isotherm (D26) and TCHP (Tropical Cyclone Heat Potential or upper ocean heat content (UOHC)). (d) Typhoon

case number in the typhoon season (July–October) of a year, (e) as in d, but for the averaged typhoon duration, (f) as in d, but for the averaged typhoon

intensity.
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Figure 1b,c depicts the typhoon season (July–October) SST and
UOHC over the MDR. In the past two decades, although the SST
exhibited little change, the UOHC and D26 increased consider-
ably3,19 (Fig. 1c). In comparison to the 1990s, recent UOHC and
D26 both exhibited clear increases of B10%, which opposed the
decrease in PDI. The origin of these increases in UOHC and D26
were thought to be associated with the recent strengthening of the
easterly trade winds, which pile up warm surface ocean water
towards the western Pacific19,20. As a result, a thicker layer of
warm water accumulates in the western North Pacific typhoon
MDR3,19,20. Therefore, the objective of this study was to
understand why typhoon PDI has actually decreased despite
evident warming in the upper ocean.

The three PDI contributing factors. PDI is determined not only
by typhoon intensity (that is, maximum surface wind speed)
but also by duration (lifetime) and typhoon occurrence
frequency (case number). The evolution of all of these parameters
(Fig. 1d–f) shows that although the intensity increased somewhat,
both the duration and number decreased considerably. Thus, the
reduction in PDI was not due to the intensity but the duration
and number.

This result is further quantified in Table 1, following the
method proposed by Emanuel21, to separate the different
contributions of the annual typhoon case number (N), annual-
averaged weighted typhoon duration over ocean (Dwt, see
Methods section for details) and annual-averaged intensity
(I, in wind speed cube) to PDI. Supplementary Fig. 2 shows
these terms with their respective long-term mean (1993–2012)
removed. The data were based on the annual typhoon season
(July–October) over the MDR domain during 1993–2012.

Table 1 summarizes the different contributions in each pentad.
In the most recent pentad (2008–2012, 2nd-last row), PDI
decreased by approximately � 17% with respect to climatology
(1993–2012 mean). Although the intensity contributed to an
increase in PDI by B6–7%, the negative contributions of number
and duration are approximately � 16% and � 7%, respectively
(jointly approximately � 23 %). Therefore, PDI still decreased
because the joint contributions of number and duration
were much larger than those of intensity. Relative to the
pentad in 1993–1997, the � 45% PDI decrease in the latest
pentad (2008–2012) was also attributed to the � 74% drop in
number and duration, with a 29% offset from the positive
contribution from the intensity (last row in Table 1; for more
details, see Supplementary Table 1).

Atmospheric and ocean environments. It is important to
understand the evident decreases in typhoon number and dura-
tion6,7 (Fig. 1d,e). Figure 2a,b shows that the decrease was
accompanied by a strong increase in vertical wind shear (VWS,
primarily contributed by the zonal VWS) and decrease in low-
level relative vorticity in the typhoon genesis region (150–180�E,

10–17.5�N) (ref. 6,7). Especially after 2008, the VWS reached
10–18 m s� 1, which represented an environment unfavourable
for formation6,7,22–25. Consistent with these developments, the
typhoon genesis position also shifted north-westwards towards
land26, reflecting the difficulty of formation at the usual genesis
region (east of 150�E; Fig. 2b-right axis, Fig. 3 and Supplementary
Figs 3–6). The weak VWS and high vorticity are the main
atmospheric dynamic conditions necessary for formation22–25,
and it becomes more difficult for typhoons to form further
east. Because they form further to the northwest towards land26,
their durations over the ocean are also shortened (Figs 1e, 2b
and 3). This trend was confirmed by the strong correlations
(r¼ 0.56–0.88) found between the increase in the zonal VWS,
decrease in vorticity, westward shift of the genesis longitude
(1st lon), the reduction in typhoon duration (Dwt) and NDwt
(case number times duration; boldface entries in Table 2 and
Supplementary Table 2, see also Supplementary Note 1).

In fact, the above change in the atmospheric conditions is part
of the large-scale environmental change over the Pacific in the
recent decade27–31. Many recent studies27–29,32 have emphasized
the dominance of this large-scale change by discussing the evident
strengthening of the atmospheric circulation (including
the enhanced easterly trade wind and Walker cell) and a La
Nina-like decadal phenomenon27–29,32. This phenomenon is
clearly visible in Fig. 3, which shows a strengthening of the
subtropical high pressure system30,31,33,34 and the easterly
wind anomaly at 850 hPa. In this research, we used three
parameters to characterize the large-scale circulation condition:
the 850 hPa easterly wind; the subtropical high area index
(SHAI)6 and a newly proposed related parameter called
subtropical high-intensity index (SHII; see Methods).

The strengthening of the large-scale circulation can cause an
increase in the VWS. This effect occurs because the VWS is
the difference between the winds in the upper (200 hPa)
and lower (850 hPa) troposphere. Enhanced circulation29

can increase both the lower-tropospheric easterlies (trade wind)
and upper-tropospheric westerlies, and thus the shear increases
(see also Supplementary Figures 3 and 4). Climatologically, the
low-level relative vorticity over the MDR is generally high24. With
strengthening of the easterlies associated with large-scale
circulation strengthening (Fig. 3), the magnitude of the relative
vorticity decreases, as manifested in a weakened monsoon trough
condition.

This control of the large-scale circulation on typhoon-related
atmospheric parameters (that is, VWS and vorticity) can be
observed in the high correlations (r¼ 0.83–0.91) between the
easterly wind, SHAI at 850 hPa and zonal VWS (see the boldface
entries in Table 2 and Fig. 4). Furthermore, strong negative
correlations (� 0.77 to � 0.83, see the boldface entries in Table 2
and Fig. 4) existed between these three parameters with PDI
because an increase in these atmospheric parameters contributed
to a reduction in PDI (Fig. 4). From an even broader perspective,
the relative SST parameter (typhoon basin SST with respect to

Table 1 | Contributing factors to annual PDI.

Pentad PDI (%) I (%) NþDwt (%) N (%) Dwt (%)

1993–1997 w.r.t. mean 28.6 � 22.2 50.8 23.4 27.4
1998–2002 w.r.t. mean � 30 � 15.8 � 14.2 0.2 � 14.4
2003–2007 w.r.t. mean 17.8 30.8 � 13 � 11.6 � 1.4
2008–2012 w.r.t. mean � 16.6 6.8 � 23.4 � 15.8 � 7.6
[2008–2012] w.r.t. [1993–1997] �45.2 29 � 74.2 � 39.2 � 35

PDI, Power Dissipation Index; w.r.t., with respect to. Contributions of the observed typhoon case number (N), duration (Dwt) and intensity (I) to the western North Pacific annual PDI, based on the method
from Emanuel 2007 ref. 18. The top 4 rows are changes in each pentad w.r.t. the long-term mean (1993–2012). The last row is the change in the most-recent pentad (2008–2012) w.r.t. the 1st pentad in
the early 1990s (1993–1997).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8182 ARTICLE

NATURE COMMUNICATIONS | 6:7182 | DOI: 10.1038/ncomms8182 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


global, tropical mean SST)35,36 also showed a decreasing trend,
supporting the decline in topical cyclone (TC) activity in the
recent decade (other details see Supplementary Figs 7 and 8).

In addition to the correlations between the different parameter
pairs, statistical analyses of each individual time series were also
performed. As shown in Fig. 1d,e, the correlation was B0.7 for
the typhoon count time series, with P¼ 0.0008. For the typhoon
duration time series, rB0.5 and P¼ 0.034. However, as the
contributions from the typhoon intensity were opposite to the
contributions from the duration and typhoon frequency (count),
the P value for the PDI time series was larger (P¼ 0.465). It
should be noted that due to the competing and offsetting impacts
between typhoon duration/frequency and intensity, and between
ocean and atmosphere, it was not possible for PDI to exhibit a
clear trend because it was the residual result from opposing and
competing contributors.

Therefore, from the typhoon perspective, the recent strength-
ening of the large-scale circulation induced a ‘worsened’
atmosphere condition for typhoons and PDI, even though
such strengthening also provided a ‘better’ ocean because the
increase in the easterly wind piled up warm surface water to the
western North Pacific and increased D26 and UOHC, as
discussed earlier19,20,27,29. However, the impact of the
‘worsened’ atmosphere appeared to dominate over the ‘better’
ocean to reduce the typhoon destructive potential through the
strong suppression of typhoon number and duration. This
interesting interplay can be observed between the ocean and the
atmosphere. Apparently, for the present epoch in the western
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Figure 2 | Vertical wind shear (VWS) and other parameters at the typhoon genesis region. (a) Time evolution of the typhoon-season averaged VWS

and zonal VWS in the typhoon genesis region in the past two decades. (b) As in a, but for the 850 hPa relative vorticity (left axis) and the genesis longitude

(right axis). (c) Coherent variability between PDI, the easterly wind at 850 hPa, SHAI (subtropical height area index) at 850 hPa and the zonal VWS. Note

that the three y-axes at right are reversed, so as to show the reduction in PDI (left axis) with the increase in these three suppressive parameters.
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North Pacific, the atmosphere dominates over the ocean in
controlling typhoon PDI.

Although the possibility of an increase in PDI (and hence the
destructiveness potential) due to ocean warming was suggested
before7, our results provided new evidence to show that such a
situation was not always applicable because the ocean was not
always dominant. We found that the situation was more complex,
and it was also possible for PDI to decrease despite ocean
warming over the western North Pacific Ocean. A ‘worsened’
atmosphere can effectively dominate over a ‘warmer’ ocean to
decrease the typhoon destructiveness potential.

Because PDI depends not only on the intensity but also on
typhoon duration and number, even if the intensity increases
due to ocean warming, it does not mean that typhoon duration
and number will increase in tandem. This is especially true
over the western North Pacific Ocean, in which these parameters
are very much controlled by the dynamical factors in
the atmosphere (for example, shear) than the thermal factors
(for example, SST, UOHC and humidity). As in Table 1,
contributions from duration and number to PDI were often
opposite to the contribution from intensity (three out of
four pentads). Therefore, the final PDI was mostly the residual
after the offset.

Discussion
These opposite contributions from the typhoon intensity versus
the frequency/duration to PDI triggers an interesting question,
that is, global warming implications8–13,35–53. Climate projections
have reported that although the tropical cyclone intensity may
increase under global warming, the occurrence frequency is
projected to reduce9–11,37,44,46–48. As noted by Zhao and Held10,
the typhoon occurrence frequency over the western North Pacific
could reduce under global warming, due to the possible impact
from reduction in the mid-troposphere vertical ascending motion
and mass flux.

It is intriguing to quantify and explore these possible
cancellation effects on PDI. We conducted the PDI analyses
using simulated typhoon data (for the late-twenty-first century
projection) from a state-of-the-art high-resolution model, as in
Zhao and Held10 and Zhao et al.11. Table 3 presents the results.
Based on this projection, the typhoon intensity (annual averaged
in the western North Pacific domain) under global warming was
B4.8% (30.12 m s� 1 versus 28.74 m s� 1) higher than the current
intensity. In addition, there was a slight increase of B3.2% in the
duration. Although both the intensity and duration increased
under global warming, there was an even larger typhoon
frequency reduction of B25.7% (Table 3). As a result, the
typhoon PDI decreased by B15.2%. The annual typhoon PDI
under global warming was B85% (1.62� 107 m3 s� 3/
1.91� 107 m3 s� 3) of the current value, showing a reduction in
the typhoon destructive potential for the Asia Pacific region
under global warming.

These results suggest that we are seeing an important
cancellation effect from co-existing and opposing PDI
contributors (that is, frequency reduction versus intensity
increase) under both the global warming scenario and
observations in the current climate epoch over the western
North Pacific Ocean. In addition, results from the quantitative
analyses suggested that the positive contribution from the
increased intensity could be much smaller than the negative
contribution from the frequency reduction and resultant PDI
decrease.

Table 2 | Correlations among 3 groups of parameters.

Correlation PDI group Circulation group TC-atm. group (genesis region)

PDI Dwt NDwt N I Easterly SHAI SHII ZVWS Vor. 1st lon 1st lat

PDI group
PDI 1.00 0.86 0.72 0.43 0.58 �0.83 �0.77 �0.72 �0.79 0.64 0.77 �0.45
Dwt 0.86 1.00 0.83 0.50 0.29 �0.68 �0.60 �0.63 �0.71 0.70 0.88 �0.76
NDwt 0.72 0.83 1.00 0.89 �0.06 �0.67 �0.67 �0.75 �0.71 0.57 0.76 �0.69
N 0.43 0.50 0.89 1.00 �0.31 �0.51 �0.57 �0.66 �0.56 0.37 0.51 �0.49
I 0.58 0.29 �0.06 �0.31 1.00 �0.49 �0.45 �0.22 �0.36 0.25 0.25 0.12

Circulation group
Easterly �0.83 �0.68 �0.67 �0.51 �0.49 1.00 0.90 0.78 0.91 �0.68 �0.61 0.42
SHAI �0.77 �0.60 �0.67 �0.57 �0.45 0.90 1.00 0.91 0.83 �0.44 �0.61 0.32
SHII �0.72 �0.63 �0.75 �0.66 �0.22 0.78 0.91 1.00 0.79 �0.46 �0.64 0.38

TC� atm. group (genesis region)
ZVWS �0.79 �0.71 �0.71 �0.56 �0.36 0.91 0.83 0.79 1.00 �0.79 �0.74 0.60
Vor. 0.64 0.70 0.57 0.37 0.25 �0.68 �0.44 �0.46 �0.79 1.00 0.72 �0.69
1st lon 0.77 0.88 0.76 0.51 0.25 �0.61 �0.61 �0.64 �0.74 0.72 1.00 �0.73
1st lat �0.45 �0.76 �0.69 �0.49 0.12 0.42 0.32 0.38 0.60 �0.69 �0.73 1.00

lat, latitude; lon, longitude; PDI, Power Dissipation Index; SHAI, subtropical high area index; SHII, Subtropical High-Intensity Index; TC-atm., TC-atmosphere; Vor., Vorticity.
Correlations among the PDI, circulation and TC-atmosphere groups of parameters, based on observations in 1993–2012. The PDI group consists of PDI-related parameters including PDI, Dwt (duration),
NDwt (case number� duration), N (case number) and I (intensity). The circulation group consists of three parameters related to the large-scale circulation at 850 hPa, including the easterly wind, SHAI
and SHII. The typhoon-atmosphere group at the genesis region consists of typhoon-related atmospheric parameters, including ZVWS (zonal vertical wind shear), 850 hPa vorticity, genesis longitude and
genesis latitude. This table is part of the large 23 parameter by 23 parameter table in Supplementary Table 2.
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summary of the key correlations in Table 2.
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However, it should also be noted that although the reduction in
the western North Pacific typhoon PDI and the cancellation effect
were observed under both the global warming projection and the
current climate epoch observation, it did not necessarily mean
that the associated climate forcing was of the same origin. The
observed recent climate epoch over the Pacific (including the
western North Pacific) was likely related to natural variability,
whereas the simulation from Zhao and Held10 and Zhao et al.11

corresponded to the global warming scenario.
For the western North Pacific region, both types of climate

conditions could result in the co-existence of an increase in
typhoon intensity but a decrease in frequency. Another similarity
is that although the ocean environment under both climate
conditions could be more favourable, a more unfavourable
atmospheric environment could co-exist to effectively suppress
the occurrence frequency, resulting in the eventual reduction in
destructive potential (that is, PDI).

Finally, although the reduction in PDI appeared to suggest a
less destructive scenario for the Asian Pacific region under both
the current climate epoch and global warming projection, it
should be taken with caution. Despite its wide usage, PDI8,9,21 is
not an ‘all-inclusive’ parameter for tropical cyclone
destructiveness. For example, PDI does not necessary reflect a
typhoon’s impacts associated with rainfall, storm surge54,55 and
landfall9 wind speed. Another caveat concerns the global
warming projection. Although our PDI analyses were based on
typhoon data produced from one of the most reputable models
currently available10,11, model to model discrepancies could exist.
Although the results from Zhao and Held10 were more consistent
with the projections from Sugi et al.52 and Murakami et al.46, the
projection from Emanuel43 suggested that both the typhoon
intensity and frequency could increase under global warming.
Because different models have different assumptions and
associated uncertainties, future analyses across more models
will be important for further assessing the uncertainties
(Supplementary Figs 9–30 and Supplementary Note 3).

Methods
Study domains. The domain of the western North Pacific Ocean is defined as
110–180�E, 0–45�N. Typhoon MDR is defined as 122–180�E, 4–26�N and the
typhoon genesis region is 150–180�E, 10–17.5�N (that is, the eastern MDR)6.

PDI-related parameters. These parameters were obtained or calculated based on
the US Joint Typhoon Warning Centre’s best track data of the International Best
Track Archive for Climate Stewardship (IBTrACS) database. For details, see below.

Typhoon-related atmospheric parameters. The European Centre for Medium-
Range Weather Forecasts’s (ECMWF) monthly Interim Reanalysis database at each
1� grid was used. The data at 850 hPa were used for the relative vorticity and
humidity. The VWS was calculated based on the difference in the vector wind
between 2 heights (200 and 850 hpa). Similarly, the zonal VWS was calculated, but
for the zonal wind only. Validation of this data using the in situ radiosound data is
shown in Supplementary Figs 31–33 and Supplementary Note 2.

Large-scale atmospheric circulation parameters. The recent strengthening of
the atmospheric circulation was characterized by an evident increase in the
easterly trade wind. For the study, winds at 850 hPa from the ECMWF Interim data
were used. The SHAI proposed by Liu and Chan6 was used to characterize the
associated subtropical high strengthening. The SHAI quantified the regional
coverage of the subtropical high in the WNP, originally defined as the normalized
grid counts enclosed by the 5,880-gpm (geopotential metre) line at 500 hPa. In this
research, we used both the 5,880-gpm line at 500 hPa and the 1,530-gpm line at
850 hPa to calculate the SHAI. The incorporation of the 850 hPa SHAI was due to a
possible stronger association between the lower atmosphere (for example, vorticity,
VWS) and typhoon activities. It could also better represent the atmospheric forcing
on the ocean. The MDR was the region of interest; therefore, the SHAI was
calculated within the MDR.

In addition, we defined an additional new index called the SHII. The SHII
was associated with SHAI, but was based on the averaged geopotential height
for the grids enclosed by the 5,880-gpm (for the 500 hPa level) or the 1,530-gpm
(for the 850 hPa level) lines. Therefore, the SHII carried the intensity information
of the subtropical high, whereas the SHAI carried the area coverage information.
The results from these two indices were similar, although there was a higher
correlation between the SHII (at 850 hPa) and the typhoon occurrence frequency
(r¼ � 0.66; Table 2).

Ocean condition time series. Monthly, one-degree SST data from the UK
Hadley Centre are used. The UOHC (also known as the Tropical Cyclone Heat
Potential16) and D26 were used to characterize the upper ocean thermal
condition. They were based on the satellite altimetry at each of the 0.25� by 0.25�
grid in the WNP MDR (from 1993 onwards, that is, since satellite altimetry
observation became available). This method was widely applied and was
validated by in-situ Argo float observations14,56,57). The altimetry Sea Surface
Height Anomaly (SSHA) data source was the monthly, delayed-mode, gridded
SSHA data from the Archiving, Validation and Interpretation of Satellite
Oceanographic Data (AVISO) data base (http://www.aviso.oceanobs.com/). The
SSHA contained both mass and thermal contributions. Therefore, Gravity
Recovery and Climate Experiment (GRACE) satellite data were used to remove the
mass contribution19.

PDI analysis based on the methodology from the study by Emanuel.
Emanuel21 provided a very useful way to approximate the contributions of
each of the three factors to PDI. For each individual typhoon, PDI is calculated as
follows:

PDI ¼
Zt

0

V3
maxdt ð1Þ

where Vmax is the maximum surface wind speed at each 6-hourly time interval (t)
over the typhoon duration (t). The annual typhoon season PDI is the
summation of all of the cases (N) in a typhoon season in a year. To avoid the
possible over-weighted contribution from the long-duration in the genesis period,
Emanuel21 proposed to use a velocity-weighted duration (Dwt i) of a typhoon, i, as
follows:

D wti ¼
R t

0 Vmaxdt
Vsmax

ð2Þ

where Vsmax is the lifetime peak intensity of the typhoon, i. As explained in
Emanuel21, the reason to use the velocity-weighted duration instead of the regular
duration (D i) was because the duration of a typhoon’s genesis (spin up) period can
be long. However, during the genesis period, the weak wind has little contribution
to PDI. As such, a velocity-weighted duration was proposed.

Averaging Dwt i over all of the typhoon cases in a typhoon season of a year yields
the following:

Dwt ¼
1
N

XN

1

Dwt i
ð3Þ

Table 3 | PDI in current and global warming scenarios.

Western North Pacific Domain PDI (� 107 m3s� 3; std) I(m s� 1; std) N(cases; std) D(days; std)

Current 1.91 (0.38) 28.74 (1.27) 22.28 (4.18) 6.52 (0.71)
Global warming 1.62 (0.44) 30.12 (1.32) 16.55 (3.50) 6.73 (0.99)
Global warming—current �0.29 þ 1.38 � 5.73 þ0.21
% Change with respect to current � 15.2% þ4.8% � 25.7% þ 3.2%

PDI, Power Dissipation Index.
Comparison of PDI and the three contributing factors under current and global warming scenarios (late 21st century projection), based on the simulated typhoon data from Zhao and Held10 and Zhao
et al.11 high resolution modelling58–60.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8182

6 NATURE COMMUNICATIONS | 6:7182 | DOI: 10.1038/ncomms8182 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Finally, an annual averaged intensity (in wind speed cube) is defined as follows:

I ¼
PN

1

R ti

0 V3
maxdtPN

1 Dwt i

ð4Þ

From above, the annually accumulated PDI in a typhoon season in a year is
N�Dwt � I. If we use the natural logarithm, then ln(PDI)¼ ln (N) þ ln (Dwt)
þ ln (I). Emanuel21 provided a quantitative way to separate the different
contributions of N, Dwt and I to PDI. The results are shown in Table 1 and
Supplementary Fig. 2. In this research, the data were based on the annual typhoon
season (July–October) over the WNP MDR domain during 1993–2012.
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